首页> 外文OA文献 >A Robust Generalized Chinese Remainder Theorem for Two Integers
【2h】

A Robust Generalized Chinese Remainder Theorem for Two Integers

机译:两个整数的鲁棒广义中心剩余定理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A generalized Chinese remainder theorem (CRT) for multiple integers fromresidue sets has been studied recently, where the correspondence between theremainders and the integers in each residue set modulo several moduli is notknown. A robust CRT has also been proposed lately for robustly reconstruct asingle integer from its erroneous remainders. In this paper, we consider thereconstruction problem of two integers from their residue sets, where theremainders are not only out of order but also may have errors. We prove thattwo integers can be robustly reconstructed if their remainder errors are lessthan $M/8$, where $M$ is the greatest common divisor (gcd) of all the moduli.We also propose an efficient reconstruction algorithm. Finally, we present somesimulations to verify the efficiency of the proposed algorithm. The study ismotivated and has applications in the determination of multiple frequenciesfrom multiple undersampled waveforms.
机译:最近已经研究了残差集合中多个整数的广义中文剩余定理(CRT),其中余数与每个残差集合中的整数模之间的对应关系是未知的。最近还提出了一种鲁棒的CRT,用于从其错误的余数中鲁棒地重建单个整数。在本文中,我们考虑了两个整数从其残差集的构造问题,其中余数不仅乱序,而且可能存在误差。我们证明了两个整数的余数误差小于$ M / 8 $可以稳健地重构,其中$ M $是所有模数的最大公因数(gcd)。我们还提出了一种有效的重构算法。最后,我们提供了一些仿真来验证所提出算法的效率。该研究是有动机的,并且在从多个欠采样波形确定多个频率中具有应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号